
/nr.J. /fear Mrrss Transfer. Vol. 36, No. 12,~ 3089-3098, 1993 0017-9310/93 $6.00+0.00 

Printed~nGreat Britain Q 1993 Pergamon PressLtd 

Instability of radiation-induced flow in an 
inclined slot 

WEN-ME1 YANG and MOU-CHANG LEU 

Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan 30049, R.O.C. 

(Received 20 July 1992 and injnalform 7 December 1992) 

Abstract-The instability of radiation-induced flow of a participating fluid in an inclined slender slot 
irradiated from one boundary is studied numerically for the inclination from 0” to 90”. The Eddington 
approximation is employed for the equation of transfer, and the pseudospectral method is used to solve 
the linearized perturbed equations. At an angle smaller than the transition angle the instability sets in as 
stationary longitudinal rolls. At an angle greater than the transition angle the instability occurs in the form 
of travelling transverse waves. The transition angle for the fluid of Pr = 0.71 is found to be minimum at 
the optical thickness near unity. Increasing optical thickness decreases the penetration of radiant energy, 
consequently increases the stability. The critical Rayleigh number increases rapidly with increasing the 

optical thickness as the optical thickness is greater than one. 

INTRODUCTION 

NATURAL convection in an inclined slot driven by a 
temperature difference between the sidewalls has been 
noticed for a long period because of its importance in 
the fundamentals of heat transfer and in applications 
in this field. When the temperature difference is small 
the flow is said to be in the conduction regime, for 
then heat transfer across the slot is primarily by con- 
duction. At a larger temperature difference, an insta- 
bility sets in either as stationary longitudinal rolls with 
axes parallel with the direction of mean flow at smaller 
inclination angle, or as travelling transverse rolls with 
axes perpendicular to the mean flow at larger incli- 
nation angle. Convection becomes the dominant 
mode of heat transfer after the instability sets in. The 
stability of flow in the conduction regime was con- 
sidered by many investigators [l-7] over the last few 
decades. However, the study of instability of the roll- 
shape flow in the convection regime is rarely seen. 
Recently, Clever and Busse [S] investigated the insta- 
bilities of longitudinal rolls in an inclined slot. Chait 
and Korpela [9] considered the stability of the sec- 
ondary flow in a vertical slot. 

The effect of radiation on the flow in an inclined 
slot is of interest in material processing and in solar 
collector applications. Arpaci and Bayazitoglu [lo], 
Hassab and Ozisik [ 1 l] examined the effects of radi- 
ation parameters on the stability of flow in the con- 
duction regime. They found that radiation has a 
stabilizing effect on the onset of roll-shape flow. 

Radiation-induced natural convection has received 
attention in atmospheric science and was noticed 
recently in some new technologies such as laser fusion. 
Webb and Viskanta [12] experimentally studied the 
natural convection in a vertical rectangular enclosure 
heated by irradiation from one side. Yang [13] 
considered the stability of a horizontal fluid layer 

irradiated from the top. In this paper, the stability of 
radiation-induced flow in the conduction regime in an 
inclined slot is studied. Both longitudinal and trans- 
verse mode of disturbances are considered. The effects 
of inclination angle and some radiation parameters 
are presented. 

FORMULATION 

Consider a layer of fluid of thickness L contained 
inside a slot, which is inclined from the horizontal 
by an angle 4, as shown in Fig. 1. A radiative heat 
flux q” is incident upon the upper surface, which has 
a hemispherical total reflectivity and transmissivity r 
and 1 - r, respectively, and a convective heat transfer 
coefficient h with the surrounding which is at the 
temperature T,. For a participating fluid, the in- 

FIG. 1. An inclined slot. 
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NOMENCLATURE 

Bi Biot number ‘: I constant 

C (@lax 0 + (p&3/&9 sin 4 ‘J2 constant 

Eh blackbody emissive power & emissivity of the lower plate 

.9 gravity i coordinate for Chebyshev polynomials 

h convective heat transfer coefficient rl nongrayness 

J magnitude of the disturbance ofj 0 magnitude of the disturbance of 

.i zeroth moment of radiative intensity temperature 

k wavenumber 0 temperature 

L thickness of the inclined slot thermal conductivity 

P Planck number; magnitude of the $ unit vector, (-sin 4, 0, - cos 4) 

disturbance of p p dynamic viscosity 

P pressure V kinematic viscosity 

Pr Prandtl number P density 

9: radiative heat fluxes (T Stefan-Boltzmann constant or growth rate 

4” irradiation of the disturbances 

Ra Rayleigh number z optical thickness 

T dimensional temperature inclination angle 

T, nth degree of Chebyshev polynomial $, transition angle 

t time Ic/ stream function 

W magnitude of the disturbance of velocity w albedo. 

0, velocities 

Xi coordinates. 
Superscript 

_ 

Greek symbols 
basic state. 

!X thermal diffusivity 

UP Planck mean absorption coefficient Subscripts 

aR Rosseland mean absorption coefficient C critical value 

I- transmissivity of the upper surface co surrounding. 

coming radiative energy will be absorbed partly by 
the fluid and partly by the lower solid boundary, 
which is assumed to be insulated and has the hemi- 
spherical total emissivity and reflectivity E and 1 -E, 
respectively. Consequently, a temperature gradient is 
developed in the fluid layer. For a small temperature 
gradient, a unicellular buoyancy driven flow in the 
slot can be considered one-dimensional in the core 
region if the aspect ratio of the slender slot is very 
large. Heat transfer across the slot is primarily by both 
conduction and radiation. When the temperature 
gradient is large enough, instability sets in and the 

flow becomes two-dimensional. Convection then 
becomes an important mode of heat transfer. 

For the incompressible fluid with constant viscosity 
and conductivity, using the Eddington approximation 
for the equation of transfer, the equations governing 
the flow [13, 141 can be written by 

a0 do a% a(lp ;it+v,ax=---- 
axi ax, ax, I 

azqp ’ 
ax, ax, +JJq; = 4VT$ 

I 
(44 

a2j 

ax, ax, (4b) 

In equations (l)-(4) xi are nondimensionalized by L, 

vi by u/L, 0 by q”LIK, t by L’la, p by p/L’, yp, ,j and 
Eb by q”, 1, = (-sin$, 0, -cosq5), a is the thermal 
diffusivity, K the thermal conductivity, p the density, 
v and p the kinematic and the dynamic viscosity 
respectively, and Pr = v/a the Prandtl number. Equa- 
tion (4a) describes the behavior of the radiative heat 
fluxes qp, which are also called the first moment of 
radiative intensity and usually applied for one-dimen- 
sional problem. Equation (4b) describes the behavior 
of the zeroth moment of radiative intensity, which is 
proportional to the radiative internal energy, and is 
applicable for multidimensional problem. In both 
equations t = (G+GL~) “‘L is called the optical thick- 
ness, up and aR are the Planck and Rosseland mean 
absorption coefficients respectively, q = (aJaR) ‘I2 the 
nongrayness, w the albedo, and E,, the blackbody 
emissive power. 

On the boundaries the following conditions are 
satisfied. 



Atx, =0: 
v,=v2=vj=o 

1 aq; 1 

?7ax, YI 
41: = 0 

~(1 -w) aj pax-j= -4E,, 
37Yl 3 

Atx, = 1: 
v, = v2 = vj = 0 

~(1 -w) G ~ z + j = 4(&,, + 1) 
3rY, 3 

where Bi = U/K is the Biot number, 

(54 
(9c) 

(5b) 
At x3 = 1: 

27, =o (94 

(5c) do 

dx3 
- Bi(8-0,) 

(5d) 
6 f$ + ;q: = 4[P(B-8,) - 11. (9f) 

(se) Although the above equations are somewhat 

(5f) 
lengthy, they are linear and can be solved in a straight- 
forward manner. The temperature and the radiative 
heat flux are firstly assumed to be 

(5g) 8- 0, = C, + C2 cash (mx3) + C3 sinh (mx,), 

(10) 
(5h) 

41: = mC, cash @x3) +mCz sinh @x3) (11) 

where m = [3?/(1 -w) +4qzP]‘/*. C,, C2 and C3 can 
be found without difficulty from the boundary con- 
ditions. They are 

E is the hemispherical total emissivity of the lower 
plate, and 

1 __=4 ;-; ) 
Yz ( > 

I is the hemispherical total transmissivity of the upper 
surface. 

BASIC FLOW 
where 

In the basic state, the flow is one-dimensional. If 
the fluid satisfies the Boussinesq approximation, by 
linearizing the emissive power, equations (2), (3) and 
(4a) can be simplified as 

& +Ra(B-6,) sin 4 = C (6) 
3 3 
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Ci =4[($+F)coshm+mg+k)sinhm]/A 

4m Bi 
C,=--- A 

rl7 

A=$(4P+E+E)coshm 

d’qf: 

dx, dx, 

(7) Once the temperature distribution is obtained, the 
velocity can be found from equation (6) by integration 
twice, (8) 

where Ra = (gBL3/va)(q”L/lc) is the Rayleigh 
number, p is the thermal expansion coefficient, and 
P = 4aTi/(~/L) is the Planck number, which phys- 
ically represents the ratio of radiation to conduction 
heat transfer across the slot, c being the Stefan-Boltz- 
mann constant. The boundary conditions are : 

-4 
6, =cy- 

4 
c,y+c2 

cash (mx3) 

m* 

sinh (mx3) 
fC3 m2 1 Rasinr$+C4x3+CS. (12) 

Atx3 =0: 

v, =o (9a) 

C., and CS can be found from the boundary conditions 
and are 

(9b) 
coshm- 1 sinh m 

m2 -x37 
> 

Rosin+ g, 
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Ra sin # 
CS-?C,~. 

The constant C can be determined from the require- 
ment of mass balance, 

S’ 
3, (x1) dx, = 0. (13) 

0 

Therefore, 

[ ( 

6coshm+6 12 sinh m 
c= c,+c, ---.-g---‘- 

m- > 

+c3 C!?!gE + 
( 

12-12coshm 

in3 )I Ra sin 4. 

The effects of radiation on the basic flow can be 
found from the above solutions. Temperature dis- 
tributions for various Biot numbers at different 
optical thicknesses can be seen from ref. [13]. The 
velocity distribution of the basic flow at different 
optical thicknesses for Ra = 1000, Pr = 0.71, Bi = 1, 
P= 1, ‘I= 1, w=O, E= 1, I= 1 and #~=90O is 
shown in Fig. 2. It is seen that increasing the optical 
thickness retards radiant energy penetration to the 
lower boundary, which in turn decreases the velocity 
of the flow. It is also noted that the antisymmetric 
velocity, which appears when both boundaries are 
fixed at different temperatures, no longer exists 
because of the asymmetric boundary conditions in the 
present study. 

LINEAR STABILITY ANALYSIS 

When the incoming radiant energy is greater than a 
certain amount, the conduction regime may no longer 
exist. The disturbances grow if the basic state is 
unstable or decay if stable. In the linear stability analy- 
sis, the perturbed quantities are added to the basic 

state and then all nonlinear terms are neglected. The 
equations describing the perturbed quantities, for 
which the same symbols as in equations (l)-(4) are 
used, may be written as 

(14) 

+V2u,+RaBsin~ (15a) 

+$f+&~)= -$&+Vzvz (15b) 

ae 
5 +Cf Y& + gv3 = ~2~+~7~j-4P~) (16) 

322 
~2j------_ 

12?2 
-PO l_oJ=-l-w (17) 

where V2 denotes the three-dimensional Laplacian 
operator. 

Squire’s theorem which reduces a three-dimen- 
sional stability problem to an equivalent two-dimen- 
sional one, is not valid for this system. Hence, 
three-dimensional disturbances are considered and 
the perturbed quantities can be written in the form 

#(x,,x~,x~;~) = @(x,> exp [i(k,x, Sk&+(it] 

(18) 

where C$ = vi, p, 6’ or j, @ = U, V, W, P, 0 or J, and 
k, and k2 are the wavenumbers of the disturbances in 

FIG. 2. Velocity dist~b~tjon of the basic flow at different optical thicknesses for ECZ = 
Bi = 1, P = 1, q = 1, w = 0, E = 1, IY = 1 and # = 90”. 

1000, Pr = 0.71. 
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the x, and x2 directions, respectively, cr = 0, + io, is 
the growth rate of the disturbances. The basic state, 
with respect to the infinitesimal disturbances, is said 
to be unstable if 0, is greater than zero or stable if Q, 
is less than zero. At the neutral state err is equal to 
zero. 

Substituting (18) into (14)-( 17) then eliminating U, 
V and P, the equations describing the magnitudes of 
the disturbances can be obtained : 

(D2_k2)2 i:;’ (D2_k2)_1 ik,;r2d, w 1 
-Ru(ik, sin r#~D+k’ cos $)O 

= ;(D2-k2)W (19) 

-(D@W+(D2--k2-ik,r?, -4~7P)O+qzJ= 00 

(20) 

!?.&@f 3r2 
D2-_k2_ ~ 

l-w > 
J=O (21) 

where D = d/dx3 and k2 = kf +k:. The associated 
boundary conditions are : 

Atx, =0: 

W=DW=O 

D@+)l(l-w)DJ=O 
37 

4P@+fl(1-w)DJ-J=0, 
37Y I 

WC) 

Atx3 = 1: 

W=DW=O 

DO+BiO = 0 

?(l-0) 
-------DJ+J= 0. 

3V, 

(22d) 

(22e) 

(22f) 

Equations (19)-(21) with the homogeneous boundary 
conditions (22) constitute a differential eigenvalue 
problem. For the existence of nontrivial solutions, the 
eigenvalues o are of infinitely many discrete values and 
dependent on the parameters and the wavenumbers 
functionally as 

o = a($, Ra, Pr, Bi, P,q,z,o,c,T, k,, k2). 

(23) 

It was found [ 11, 151 that the onset of instability in 
an inclined slot may either occur as stationary con- 
vective cells or in the form of travelling waves. At 
small inclination angles, two-dimensional longi- 
tudinal rolls with k, = 0 occur in the stationary 
manner. Ra cos 4 appears in the governing equations 
as the only term involving the inclination angle. In the 
meantime, both the real and imaginary parts of the 
eigenvalues vanish at the neutral state. In this 
situation, Ra cos C#I instead of 0 may be considered to 

be the eigenvalue. The Rayleigh number at the neutral 
state is independent of the Prandtl number, 

Ra cos 4 = f (Bi, P, q, 7, w, E, r, k2). (24) 

When the inclination angle is greater than a transition 
angle b,, instability due to two-dimensional transverse 
disturbances with k, = 0 occurs in the form of trav- 
elling waves. Under this condition, the Rayleigh num- 
ber at the neutral state has to be searched until the 
real part of the most unstable eigenvalue vanishes. 
The imaginary part provides the information of the 
speed of propagation of disturbances, which is equal 
to --q/k,. 

The perturbed complex stream function at the neu- 
tral state can be obtained by integrating uX with 
respect to x2 

$ = _ $! eik1.v 
2 

for the longitudinal rolls, or with respect to x, 

$ = _ i$ eWr, +o,f) 

I 

for the transverse rolls. For both cases, either the 
real part or the imaginary part can be employed to 
calculate the perturbed streamlines. 

METHOD OF SOLUTION 

The eigensystem (19)-(22) may be solved in many 
different ways. In the present analysis, the Chebyshev 
pseudospectral method [ 161 is used because of its high 
accuracy. 

The &h-degree Chebyshev polynomial of the first 
kind [17] is defined by 

T,(i) = cos (n cos- ’ i) 

in the interval [ E [ - 1, 11. To fit the domain of defi- 
nition of Chebyshev polynomials, the domain of the 
present problem is transformed from 0 < xX < 1 to 
-1 <[< lby[=2(x,-l/2). 

The variables in equations (19)-(21) can be 
expanded as 

N+I 

w= 1 a”{~~-~[l-(-1)“]T,-:[l+(-l)“]T,} 
n=2 

N- I 
0 = 1 b,T, 

n=O 
N-I 

J= 1 c,T, 
n=O 

(25) 

(26) 

(27) 

where a,, b, and c, are unknown coefficients. Theo- 
retically the variables can be expanded by the basis 
functions, which are combinations of Chebyshev 
polynomials and fulfill all boundary conditions in 
equation (22). But because of the mixed boundary 
conditions of 0 and J, these basis functions are diffi- 
cult to obtain. Therefore the basis functions are 
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Table 1. Ru, and u, vs N at 4 = 90’ for Pr = 0.71, Bi = 1, P = 1, 1 = 1, z = I. w = 0, 6 = 1. f = I and 
k, = 2.78 

N 10 12 14 16 18 20 22 24 
-____ 

Ra, 43 181.41 43 304.67 43 202.54 43 195.80 43 192.94 43 193.29 43 193.22 43 193.22 
0, 14.517 15.220 15.318 15.323 15.322 15.322 15.322 15.322 

chosen such that only W = 0 at [ = f 1 are satisfied. 
Two boundary conditions for each variable then i, = cos & 

( ! 
rt n=1,2 ,..., N-2, 

remain and must be treated later. Leaving the same 
number of boundary conditions for each variable 
makes for easy programming when the differential 

and at the two boundary conditions for each variable, 

eigensystem is converted to an algebraic eigensystem. 
an algebraic eigensystem is obtained : 

Substituting equations (25)-(27) into equations AX = aBX (28) 
(19)-(21) and requesting the identities to hold at the 
N- 2 collocation points, where A and B are two 3N x 3N coefficient matrices, 

I _--- 

I ,A’ 
/--- ~--~-- 

,” 
/ 
, 

\, 

_1,5 

0 15 30 15 GO 75 90 

cr” 

(b) 

FIG. 3. (a) Rayleigh number and (b) oi at the neutral states vs inclination angle for Pr = 0.71, Bi = 1, 
P=1,~=1,~=0.001,o=O,s=land~=l. 
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los 

FIG. 4. The critical Rayleigh number vs inclination angle for different optical thicknesses at Pr = 0.71, 
Bi= l,P= I,q= l,w=O,~= Iandr= 1. 

FIG. 5. Critical Rayleigh number vs optical thickness for Pr = 0.71, Bi = 1, P = 1, q = I, z = 1, w = 0, 
E = 1. r = 1 and d, = 90”. 

and X is a 3N vector composed of the unknown and denoted by Ra, which occurs at the critical wave- 
coefficients. number k,. 

The eigenvalues of the generalized eigensystem (28) 
can be solved directly by the QZ algorithm [18]. The 
Ra at the neutral state, at which the real part of the 
most unstable eigenvalue vanishes, is searched by the 
method of regula falsi. The iteration is not terminated 
until the real part of the most unstable eigenvalue is 
less than lo- 6 or the difference of two consecutive 
Rayleigh numbers is less than 1. When longitudinal 
rolls occur at the onset of instability, (T is set to zero 
and Ra cos Cp is treated to be the eigenvalue. For the 
fixed parameters, different Ra at neutrally stable states 
may be obtained for different wavenumbers. The mini- 
mum Rayleigh number is the critical Rayleigh number 

RESULTS AND DISCUSSION 

The case of a horizontal layer with solid lower 
boundary and free upper boundary has been con- 
sidered by Yang [ 131. The results show that decreasing 
the transmissivity of the upper boundary has a stabil- 
izing effect because less radiant energy can enter the 
flow. Decreasing the emissivity of the lower sundae 
decreases the energy absorbed by the lower boundary 
and develops a smaller temperature gradient, which 
in turn increases the stability. For the inclined slot, 
the same phenomena can be found. Therefore, the 
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Streamlines 

W.-M. YANG and M.-C. Lr-u 

Isotherms 

z= 10 

FIG. 6. Perturbed streamlines and isotherms of longitudinal rolls at # = 0” for Pr = 0.71, Bi = 1, P = I. 
~=l,w=O,s=landf=l. 

effects of transmissivity of the upper boundary and 
emissivity of the lower boundary are no longer exam- 
ined but set equal to unity in the following presen- 
tation Also for simplifying the analyses, the effects of 
the parameters q and o on the stability of flow, which 
were discussed in refs. [IO, 11, 141, are not considered 
in this study. They are respectively set equal to 1 and 
0, which means that the fluids are assumed to be gray 
and nonscattering. Since most flow problems with 
pronounced effects of radiation are associated with 
gaseous media, the Prandtl number is set equal to 0.71 
in the following calculations. 

An accuracy test of the numerical results is exam- 

ined and the dependence of Ra, and cri is shown in 
Table 1 for the case that instability occurs as trans- 
verse rolls for Bi = 1, P = 1, z = 1 and C#J = 90”. It is 
seen that for N > 16 convergent results for both Ra, 
and cri have been obtained in this case. For the other 
cases for which Ra, is greater or smaller, more or 
fewer terms should be employed. When the instabihty 
occurs as longitudinal rolls, since the result can be 
obtained from the relation Ra, = Ra&os 4, where 
Rae is the critical Rayleigh number for # = O”, cal- 
culation is done onty for the horizontal case for which 
fewer terms are usually enough. 

For the horizontal case of an inclined slot, insta- 
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Streamlines Isotherms 

z= 10 

FIG. 7. Perturbed streamlines and isotherms of transverse rolls at 4 = 90” for Pr = 0.71, Bi = 1, P = 1, 
q = f, w = 0, E = 1 and r = 1. 

bility occurs as steady rolls. There is no difference for curves are similar to those of an inclined slot with 
longitudinal or transverse rolls. When the inclination different boundary temperatures, but now the tran- 
angle is increased from O”, the buoyancy forces domi- sition angle is seen to be 77” which is larger than the 
nate the instability and steady longitudinal rolls still transition angle 72” of the inclined slot with different 
appear. After the inclination angle is greater than a boundary temperatures [l 11. The imaginary part of 
transition angle, inertia forces rather than buoyancy the most unstable eigenvalue vs inclination angle is 
forces dominate the instability. Transverse rolls shown in Fig. 3(b). For longitudinal roils, ai is always 
then compete for occurence. Figure 3(a) shows the equai to zero which is represented by the horizontal 
Rayleigh number at the neutrally stable states cor- line. When transverse rolls occur for # > O”, because 
responding to the onset of longitudinal rolls and trans- of the asymmetric basic velocity and temperature pro- 
verse rolls vs inclination angle for an optically thin files, the disturbances are propagating in the form of 
fluid at Bz’ = 1, P = 1 and z = 0.001. Basically, the travelling waves under which ei is not equal to zero. 
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Korpela et al. [5, 61 found that in the case of inclined 
slot with different temperatures 0, is equal to zero for 
0.24 < Pr < 12.7 and C$ close to 90 Vest and Arpaci 
[3] experimentally showed that stationary rolls exist 
at Ra above the critical value for air at 4 = 90”. 
Lauriat and Desrayaud [ 151 showed that when asym- 
metric boundary conditions are present, instabilities 
set in as a single travelling wave whose moving direc- 
tion is dependent on the emissivities of the bounding 
walls. However, the present study considers that 
irradiation is incident from one side and both bound- 
aries are floating in temperature under which insta- 

bility certainly would not set in as stationary roll for 
the transverse disturbances. 

Korpela [6] found that the transition angle is affec- 
ted by Prandtl number significantly for Pr < 12.7 and 
moderately for Pr > 12.7. In this study, the radiation 
effect is the main concern. The effect of optical thick- 
ness, one of the important parameters in radiation, 
on the transition angle can be seen from Fig. 4 in 
which the stability curves of critical Rayleigh number 
vs inclination angle for different optical thicknesses 
are shown. The transition angle decreases then 
increases with increasing optical thickness and has a 
minimum value at z about 1. It is also seen that the 
critical Rayleigh number increases with increasing 
optical thickness for any inclination angle. Because 
the optical thickness represents the resistance of inci- 
dent radiative energy to penetrate to the lower bound- 
ary, increasing optical thickness decreases the pen- 
etration which in turn increases the stability of flow. 
The increase of the critical Rayleigh number with 
optical thickness is much greater for z > 1 than that 
for z < 1, which is shown in Fig. 5 for the vertical slot. 

Figure 6 shows the perturbed streamlines and iso- 
therms of the longitudinal rolls at 4 = 0” for different 
optical thicknesses. Since the longitudinal rolls are 

stationary, the stream function and temperature are 
periodically antisymmetric and symmetric, respec- 
tively, in the x,-direction as shown. It is also seen that 
the maximum perturbed temperature shifts toward 
the upper surface as the optical thickness increases 
because the penetration depth of radiant energy is 
smaller for a larger optical thickness. When the slot 
is at the vertical position, instability occurs in the form 
of travelling waves and the flow becomes unsteady. 
The perturbed steamlines and isotherms at an instant 
are shown in Fig. 7 for different optical thicknesses. 

It is seen that the flow remains periodic but is no 
longer symmetric in the x3-direction. 

CONCLUSION 

The stability of flow induced by irradiation from 
the upper side in the conduction regime in an inclined 
slot is studied numerically by linear theory. The results 
show that the transition angle, a cross-over angle of 
the flow from the longitudinal rolls to the transverse 
rolls, is affected by the optical thickness and has a 
minimum at the optical thickness near unity. When 

the inclination angle is less than the transition angle. 
instability sets in as stationary longitudinal rolls. 
When the inclination angle is greater than the tran- 
sition angle, instability occurs in the form of travelling 
waves. However, increasing the radiation effects in the 

participating fluid, by increasing the optical thickness 

or the Planck number, increases the stability of the 

flow. 
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